Discriminant Subspace Learning Based on Support Vectors Machines
نویسندگان
چکیده
A new method for dimensionality reduction and feature extraction based on Support Vector Machines and minimization of the within-class data dispersion is proposed. An iterative procedure is proposed that successively applies Support Vector Machines on perpendicular subspaces using the deflation transformation in such a way that the within-class variance is minimized. The proposed approach is proved to be a successive SVM using deflation kernels. The normal vectors of the successive hyperplanes contain discriminant information and they can be used as projection vectors for feature extraction and dimensionality reduction of the data. Experiments on various datasets are conducted in order to highlight the superior performance of the proposed algorithm.
منابع مشابه
Relationships Between Support Vector Classifiers and Generalized Linear Discriminant Analysis on Support Vectors
The linear discriminant analysis based on the generalized singular value decomposition (LDA/GSVD) has recently been introduced to circumvents the nonsingularity restriction that occur in the classical LDA so that a dimension reducing transformation can be effectively obtained for undersampled problems. In this paper, relationships between support vector machines (SVMs) and the generalized linea...
متن کامل248 Remotely Sensed Data Characterization
EMPs Extended morphological profiles EMPs Extended morphological profiles LDA Linear discriminant analysis LogDA Logarithmic discriminant analysis MLR Multinomial logistic regression MLRsubMRF Subspace-based multinomial logistic regression followed by Markov random fields MPs Morphological profiles MRFs Markov random fields PCA Principal component analysis QDA Quadratic discriminant analysis RH...
متن کاملObject-oriented subspace analysis for airborne hyperspectral remote sensing imagery
An object-oriented mapping approach based on subspace analysis of airborne hyperspectral images was investigated in this paper. Hyperspectral features were extracted based on subspace learning approaches, in order to reduce the redundancy of spectral space and extract the characteristic images for the further object-oriented classification. In this paper, three kinds of spectral feature extract...
متن کاملShared latent subspace modelling within Gaussian-Binary Restricted Boltzmann Machines for NIST i-Vector Challenge 2014
This paper presents a novel approach to speaker subspace modelling based on Gaussian-Binary Restricted Boltzmann Machines (GRBM). The proposed model is based on the idea of shared factors as in the Probabilistic Linear Discriminant Analysis (PLDA). GRBM hidden layer is divided into speaker and channel factors, herein the speaker factor is shared over all vectors of the speaker. Then Maximum Lik...
متن کاملExtended Grassmann Kernels for Subspace-Based Learning
Subspace-based learning problems involve data whose elements are linear subspaces of a vector space. To handle such data structures, Grassmann kernels have been proposed and used previously. In this paper, we analyze the relationship between Grassmann kernels and probabilistic similarity measures. Firstly, we show that the KL distance in the limit yields the Projection kernel on the Grassmann m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012